Photonic instantaneous frequency measurement of wideband microwave signals
نویسندگان
چکیده
We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.
منابع مشابه
Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip
Photonic-based instantaneous frequency measurement (IFM) of unknown microwave signals offers improved flexibility and frequency range as compared with electronic solutions. However, no photonic platform has ever demonstrated the key capability to perform dynamic IFM, as required in real-world applications. In addition, all demonstrations to date employ bulky components or need high optical powe...
متن کاملPhotonic Implementation of an Instantaneous Frequency Measurement
With the rapid and ongoing developments in telecommunication and electronic warfare technology, faster and more flexible systems are in demand. Wideband signal processing is thus needed to implement such systems. Microwave photonics has been introduced as a tool for achieving such ultra broadband signal processing. Instantaneous Frequency Measurement (IFM) receivers play an important role in el...
متن کاملPerformance Analysis Of Mono-bit Digital Instantaneous Frequency Measurement (Difm) Device
Instantaneous Frequency Measurement (IFM) devices are the essential parts of anyESM, ELINT, and RWR receiver. Analog IFMs have been used for several decades. However, thesedevices are bulky, complex and expensive. Nowadays, there is a great interest in developing a wideband, high dynamic range, and accurate Digital IFMs. One Digital IFM that has suitably reached allthese requirements is mono-bi...
متن کاملIntegrated Microwave Photonics for Wideband Signal Processing
We describe recent progress in integrated microwave photonics in wideband signal processing applications with a focus on the key signal processing building blocks, the realization of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF) photonic links. New developments in integration-based microwave photonic techniques, that have high potentialities to ...
متن کاملMicrowave photonics for space-time compression of ultrabroadband signals through multipath wireless channels.
We employed photonic radio frequency (RF) arbitrary waveform generation to demonstrate space-time compression of ultrabroadband wireless signals through highly scattering multipath channels. To the best of our knowledge, this is the first experimental report that explores an RF-photonic transmitter to both characterize channel dispersions in real wireless environments and generate predistorted ...
متن کامل